PENGERTIAN FUNGSI EKSPONEN

  1. A.   zPENGERTIAN FUNGSI EKSPONEN

Dalam pelajaran kelas X, telah dipelajari perpangkatan/eksponen  bilangan bulat. Untuk mempelajari bab ini kita ingat kembali sifat-sifat bilangan berpangkat rasional. Jika a dan b bilangan real, p dan q bilangan rasional maka berlaku hubungan sebagai berikut :

1.                                 7.

2.                                8.

3.                                   9.

4.                               10.

5.                                11.

6.

 

Di kelas XI ini akan lebih mendalami tentang perpangkatan yang pangkatnya merupakan suatu fungsi. Bentuk perpangkatan yang pangkatnya merupakan suatu fungsi disebut fungsi eksponen.

Fungsi eksponen banyak manfaatnya dalam kehidupan. Misalnya dalam peluruhan radioaktif, pertumbuhan tanaman, perhitungan bunga tabungan di Bank dan sebagainya.

C. PERSAMAAN EKSPONEN

Definisi :

Persamaan eksponen adalah sebuah persamaan yang eksponennya mengandung peubah x dan tidak menutup kemungkinan bilangan pokoknya juga mengandung peubah x.

  1. Sifat Operasi Bilangan Berpangkat Bulat
    1. am x an = am+n
    2. (am)n = (a)mn
    3. am/an = am-n
    4. (a x b )n = an x bn
    5. (a/b)n = an/bn

 

2. Sifat Operasi Bilangan Pangkat Rasional

Jika a,b,c є bilangan real dan m,n,p,q є bilangan bulat positif, maka :

a. am/n . ap/q = am/n + p/q

b. (am/n)p/q = amp/nq

c. am/n : ap/q = am/n – p/q

d. (ab)m/n = am/n . bm/n

e. (a/b)m/n = am/n/bm/n

 

3. Persamaan Eksponen

Misalkan ada sebuah persamaan f(x) = 2x. Tentukan nilai x apabila f(x) = 8 !

Kita dapat menyelesaikannya dengan membentuk sebuah persamaan f(x) = 2x :

8 = 2x atau 2x = 8 atau 2x = 23

Persamaan yang memuat bentuk eksponen disebut persamaan eksponen.

Persamaan eksponen dapat berbentuk :

a. af(x) = 1

b. af(x) = ap

c. af(x) = ag(x)

d. af(x) = bf(x)

e. af(x) = bg(x)

f. [f(x)]f(x) = [f(x)]g(x)

a dan b dinamakan bilangan pokok, a,b > 0 dan a,b ≠ 1.

f(x) dan g(x) adalah sebuah fungsi aljabar.

 

Persamaan eksponen dapat diselesaikan dengan menggunakan sifat-sifat persamaan eksponen. Sebelum mempelajari sifat-sifat tersebut sebaiknya kita tinjau kembali bilangan pangkat nol (a0).

 

Pengertian pangkat nol

Untuk setiap a є bilangan real, maka :

a0 = 1

Keterangan : untuk 00 tidak didefinisikan.

 

4. Sifat – sifat Fungsi Eksponen untuk Menyelesaikan Persamaan Eksponen

  1. Sifat fungsi atau eksponen berbentuk af(x) = 1

Jika af(x)= dengan a > 0 dan a ≠ 1, maka f(x) = 0

  1. Sifat fungsi atau eksponen berbentuk af(x) = ap

Jika af(x) = ap dengan a > 0 dan a ≠ 1, maka f(x) = p

  1. Sifat fungsi atau persaman eksponen berbentuk af(x)= ag(x)

Jika af(x) = ag(x)dengan a > 0 dan a ≠1 , makaa f(x) = g(x)

d. Sifat fungsi atau persamaan berbentuk af(x) = bf(x) (a≠b)

Jika af(x) = bf(x) dengan a,b > 0 a,b ≠ 1 serta a ≠ b, maka f(x) = 0

e. Sifat fungsi atau persamaan eksponen berbentuk af(x) = bg(x)

Penyelesaian persamaan eksponen berbentuk af(x) = bg(x) dengan a,b>0 dan a,b≠1 dapat diselesaikan dengan logaritma, yaiu log :

af(x) = log bg(x) atau f(x) log a = g(x) log b

f. Sifat fungsi persamaan eksponen berbentuk [U(x)]f(x) = [U(x)]g(x)

Jika [U(x)]f(x) = [U(x)g(x)] maka nlai x diperoleh dari :

  1. f(x) = g(x)
  2. U(x) = 1
  3. U(x) = 0, jika nilai x memenuhi syarat f(x) ≥ 0 dan g(x) > 0
  4. U(x) = -1, jika nilai x memenuhi syarat f(x) dan g(x) kedua-duanya ganjil atau kedua-duanya genap.

 

BENTUK-BENTUK
A. af(x) = ap ® f(x) = p
Caranya ® Samakan bilangan pokoknya sehingga pangkatnya dapat disamakan
Contoh:
3x – 4 = 1
3x – 4 = 30
Maka x – 4 = 0
X = 4
B. af(x) = ag(x) ® f(x) = g(x)Caranya ® Samakan bilangan pokoknya sehingga pangkatnya dapat disamakan.
contoh :
2 SUKU ® SUKU DI RUAS KANAN, 1 SUKU DI RUAS KIRI
Ö(82x-3) = (32x+1)1/4(23)(2x-3)1/2 = (25)(x+1)1/42(6x-9)/2 = 2(5x-5)/4(6x-9)/2 = (5x-5)/424x-36 = 10x+1014x = 46x = 46/14 = 23/7
3x²-3x+2 + 3x²-3x = 103².3x²-3x+3x²-3x = 109. 3x²-3x + 3x²-3x = 1010. 3x²-3x = 103x² – 3x = 30x² – 3x = 0x(x-3) = 0×1 = 0 ; x2 = 3
3 SUKU ® GUNAKAN PEMISALAN
22x + 2 – 2 x+2 + 1 = 022.22x – 22.2x + 1 = 0Misalkan : 2x = p 22x = (2x)² = p²4p² -4p + 1 = 0(2p-1)² = 02p – 1 = 0p =1/22x = 2-1x = -1
3x + 33-x – 28 = 103x + 33/3x – 28 = 10misal : 3x = pp + 27/p – 28 = 0p² – 28p + 27 = 0(p-1)(p-27) = 0p1 = 1 ® 3x = 30 x1 = 0p2 = 27 ® 3x = 33×2 = 3

C. af(x) = bf(x) ® f(x) = 0
Bilangan pokok berbeda, pangkat sama. Pangkatnya = 0.
Contoh:
3x²-x-2 = 7x²-x-2x² – x -2 = 0(x-2)(x+1) = 0×1 = 2 ; x2 = -1
D. af(x) = bg(x) ® f(x) log a = g(x) log b
Bilangan pokok berbeda, pangkat berbeda. Diselesaikan dengan menggunakan logaritma.
Contoh:
4x-1 = 3x+1(x-1)log4 = (x+1)log3xlog4 – log4 = x log 3 + log 3x log 4 – x log 3 = log 3 + log 4x (log4 – log3) = log 12x log 4/3 = log 12x log 4/3 = log 12 x = log 12/ log 4/3 = 4/3 log 12
E. f(x) g(x) = f(x) h(x) ® Bilangan pokok (dalam fungsi) sama, pangkat berbeda.Tinjau beberapa kemungkinan.
Pangkat sama g(x) = h(x)
Bilangan pokok f(x) = 1 ket: 1g(x) = 1h(x) = 1
Bilangan pokok f(x) = -1Dengan syarat, setelah nilai x didapat dari f(x)=-1 , maka nilaipangkatnya yaitu g(x) dan h(x) kedua-duanya harus genap atau kedua-duanya harus ganjil.ket :g(x) dan h(x) Genap : (-1)g(x) = (-1)h(x) = 1g(x) dan h(x) Ganjil : (-1)g(x) = (-1)h(x) = -1
Bilangan pokok f(x) = 0Dengan syarat, setelah nilai x didapat dari f(x) = 0, maka nilai pangkatnya yaitu g(x) dan h(x) kedua-duanya harus positif.ket : g(x) dan h(x) positif ® 0g(x) = 0h(x) = 0
Contoh:
(x² + 5x + 5)3x-2 = (x² + 5x + 5)2x+3
Pangkat sama 3x – 2 = 2x + 3 ® x1 = 5
Bilangan pokok = 1x² + 5x + 5 = 1x² + 5x + 4 = 0 ® (x-1)(x-4) = 0 ® x2 = 1 ; x3 = 4
Bilangan pokok = -1x² – 5x + 5 = -1x² – 5x + 6 = 0 ® (x-2)(x-3) = 0 ® x4 = 2 ; x5 = 3g(2) = 4 ; h(2) = 7 ; x4 = 2 tak memenuhi karena (-1)4 ¹ (-1)7g(3) = 7 ; h(3) = 9 ; x5 = 3 memenuhi karena (-1)7 = (-1)9 = -1
Bilangan pokok = 0x² – 5x + 5 = 0 ® x5,6 = (5 ± Ö5)/2kedua-duanya memenuhi syarat, karena :g(2 1/2 ± 1/2 Ö5) > 0h(2 1/2 ± 1/2 Ö5) > 0Harga x yang memenuhi persamaan diatas adalah :HP : { x x = 5,1,4,3,2 1/2 ± 1/2 Ö5}
F. A{af(x)}2 = B{af(x)}2 + C = 0
Dengan ketentuan a>0 dan a ≠ 0, A, B dan C bilangan Real dan A ≠ 0
Caranya: 1. mengubah persamaan exponen ke dalam persamaan kuadrat dengan pemisalan a f(x) = y sehingga persamaan kuadrat yang didapatkan sebagai berikut: Ay2 + By + C = 0
Contoh:
22x – 12 .2x + 32 = 0
(2x)2 – 12 (2x) + 32 = 0
Misalkan 2x = y, maka persamaan menjadi:
y2 – 12y + 32 =0
(y – 4) (y – 8) =0
Untuk y = 4 didapatkan:
2x = 4
2x = 22
X = 2
Untuk y = 8
2x = 8
2x = 23
X = 3
Jadi himpunan penyelesaiannya = {2,3}

About these ads

Tinggalkan Balasan

Isikan data di bawah atau klik salah satu ikon untuk log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Logout / Ubah )

Twitter picture

You are commenting using your Twitter account. Logout / Ubah )

Facebook photo

You are commenting using your Facebook account. Logout / Ubah )

Google+ photo

You are commenting using your Google+ account. Logout / Ubah )

Connecting to %s